
Prof. Ren-Song Tsay September 23, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/16 ©  Ren-Song Tsay, NTHU, Taiwan 92

5.10

Representation 
of Disjoint Sets

Disjoint Sets

 Assume a set 𝑺 of 𝒏 elements indexed
by the numbers in 𝟎, 𝟏, 𝟐, … , 𝒏 − 𝟏 is
divided into 𝑘 subsets 𝑺𝟏, 𝑺𝟐, … , 𝑺𝒌 and
𝑺𝒊 ∩ 𝑺𝒋 = ф for any 𝒊, 𝒋 є { 𝟏,… , 𝒌 } and
𝒊 ≠ 𝒋

 Operations:
◦ Disjoint set union: 𝑼𝒏𝒊𝒐𝒏(𝑺𝒊, 𝑺𝒋)
 Let 𝑆𝑖 = 𝑆𝑖 𝑈 𝑆𝑗or 𝑆𝑗 = 𝑆𝑖 𝑈 𝑆𝑗

◦ Find the set containing element 𝑥: Find(𝒙)

93

5.10

Disjoint Sets: Example

 Set

◦ 𝑆 = { 0,1, 2, 3, 4, 5 }

 Disjoint subsets

◦ 𝑆1 = { 0, 2, 3 }

◦ 𝑆2 = { 1 }

◦ 𝑆3 = { 4, 5 }

 Union(𝑆1, 𝑆2) = { 0, 1, 2, 3 }

 Find(5) = 3

94



Prof. Ren-Song Tsay September 23, 2018

Chapter 1 — Computer Abstractions and Technology 2

DS:  Array Representation

 𝑆 = { 0, 1, 2, 3, 4, 5 } with subsets

◦ 𝑆1 = { 0, 2, 3 }, 𝑆2 = { 1 } and 𝑆3 = { 4, 5 }

 Using a sequential mapping array

where index represents set members

and array value indicates set name

95

1 2 1 1 33

S[0]  S[1]   S[2]   S[3]  S[4]  S[5] 

Set name

Set member

DS Operation: Find(x)

 Find the set which contains element x

is easy

◦ Find(5) = S[5] = set 3

Find(3) = S[3] = set 1

◦ Complexity = O(1)

96

5.10.

2

1 2 1 1 33

S[0]  S[1]  S[2]  S[3]  S[4]  S[5] 

Set name

Set member

DS Operation: Union(𝑆𝑖, 𝑆𝑗)

 Assume we always merge the 2nd set to 1st

set, i.e. 𝑆𝑖 = 𝑆𝑖 U 𝑆𝑗
 Scan the array and set 𝑺[𝒌] to 𝒊 if 𝑺[𝒌] == 𝒋

◦ 𝑆2=Union(𝑆2, 𝑆3)

97

1 2 1 1 33

S[0]  S[1]  S[2]  S[3]  S[4]  S[5] 

Set name

Set member

1 2 1 1 22

S[0]  S[1]  S[2]   S[3]  S[4]  S[5] 

Set name

Set member



Prof. Ren-Song Tsay September 23, 2018

Chapter 1 — Computer Abstractions and Technology 3

S1

S2

S3

DS: Tree Representation

 Link elements of a subset to form a tree

◦ Link children to root

◦ Link root to set name

99

Set name

0

2 3

1 4

5

S1 S2 S3

DS: Tree Representation

 Use an array to store the tree

 Identify the set by the root of the tree

100

T[0] -1

T[1] -1

T[2] 0

T[3] 0

T[4] -1

T[5] 4

S1

S2

S3

Set name

0

2 3

1 4

5

S1 S2 S3

DS Operation: Union(𝑆𝑖, 𝑆𝑗)

 Set the parent field of one of the root to the

other root

◦ 𝑆1=Union(𝑆1, 𝑆3)

◦ Time complexity : O(1)

101

0

2 3

4

5

S1 S3

0

2 3 4

5

T[0] -1

T[1] -1

T[2] 0

T[3] 0

T[4] 0

T[5] 4



Prof. Ren-Song Tsay September 23, 2018

Chapter 1 — Computer Abstractions and Technology 4

DS Operation: Find(𝑥)

 Follow the index starting at 𝑥 and trace the tree
structure until reaching a node with parent value = -1

 Use the root to identify the set name

102

T[0] -1

T[1] -1

T[2] 0

T[3] 0

T[4] -1

T[5] 4

S1

S2

S3

Set name

0

2 3

1 4

5

S1 S2 S3

Find(3)=𝑺𝟏

Time Complexity for 𝑛 Finds 

 𝑆 = {0, 1, 2, … , 𝑛 − 1}
◦ 𝑆𝑖 = 𝑖 , 0 ≤ 𝑖 < 𝑛

 Perform a sequence Union
◦ Union(𝑆0, 𝑆1), Union(𝑆1, 𝑆2), …, Union(𝑆𝑛−2, 𝑆𝑛−1)

 Followed by a sequence of Find

◦ Find(0), Find(1), …, Find(n-1)

◦ Time Complexity = σ𝑖=0
𝑛−1 𝑖 = 𝑂(𝑛2)

103

n-1

1

0

2

O(1)

O(i)

Improved Union (𝑆𝑖, 𝑆𝑗)

 Do not always merge two sets into the first

set

 Adopt a Weighting rule to union operation

◦ 𝑆𝑖 = 𝑆𝑖 U 𝑆𝑗, if | 𝑆𝑖 | >= | 𝑆𝑗 |

◦ 𝑆𝑗 = 𝑆𝑖 U 𝑆𝑗, if | 𝑆𝑖 | < | 𝑆𝑗 |

 𝑆 = { 0, 1, 2,… , 𝑛 }

◦ 𝑆𝑖 = 𝑖 , 0 ≤ 𝑖 < 𝑛

◦ Union(𝑆0, 𝑆1) → Union(𝑆0, 𝑆2)→ Union(𝑆0, 𝑆3)

104

0

1 32



Prof. Ren-Song Tsay September 23, 2018

Chapter 1 — Computer Abstractions and Technology 5

Maximum Tree Height

 Lemma 5.5

◦ Let T be a tree with m nodes created by a

sequence of weighting unions.

The height of T ≤ log2𝑚 + 1

 Proof

◦ The longest length is the path that is

increased by 1 in every union operation

◦ Please check the proof in the textbook by

yourself!

105

Time Complexity

 The following sequence of unions
produces the height of log 𝑛

 Union(1, 2)

 Union(3, 4)

 Union(5, 6)

 Union(7, 8)

 Union(1, 3)

 Union(5, 7)

 Union(1, 5)

106

1 2 3 4 5 6 7 8

1

2 3

4

5

6 7

8

For (𝒏 − 𝟏) unions and 𝒏 find ⇒ 𝑶(𝒏 log 𝒏)

Improved Find(𝑥)

 Adopt a Collapsing rule for find(𝑥)

◦ If 𝒋 is a node on the path from 𝒊 to the root,

set parent[𝒋] to root(𝒊)

107

find(6)

1

2

3

6

5 7

4

1

2 4 5 6

3 7

• For (𝒏 − 𝟏) unions and 𝒏 find ⇒ 𝑶 𝒏 ∙ 𝒂 𝒏

• In average 𝒂 𝒏 ≤ 𝐥𝐨𝐠 𝒏

𝒊

𝒋



Prof. Ren-Song Tsay September 23, 2018

Chapter 1 — Computer Abstractions and Technology 6

Self-Study Topics

 5.4 Additional Binary Tree Operations

 5.5 Threaded Binary Trees

 5.8 Selection Trees

 5.11 Counting Binary Trees

108


